
N88-16371
Software Simulation

of Time Delay in Teleoperation

K. Wayne Goode
Kenneth E. Johnson Research Center

University of Alabama in Huntsville

Huntsville, Alabama 35899

ABSTRACT

This paper describes research done in the Space Robotics Laboratory at

UAH studying the effects of time delay on teleoperation.

INTRODUCTION

The long range goal for the NASA space station is to establish a per-

manent presence of man and machines in space. Because of cost and safety

factors, teleoperation will be important to the fulfillment of this goal.

Teleoperation means remote operation. That is, the robot receives

instructions from a human operator and then performs the task. The task to

be performed is at a remote distance from the operator.

In space applications there is often a delay between the time the

human operator gives a command and time the command is executed in space.
There is a further delay before pictures from cameras located at the remote

site are relayed to the operator. As the time delay increases, so does the

time required to complete the task, thus making the operation of the remote
device more difficult.

The Johnson Research Center at the University of Alabama in Huntsville

has established a space robotics laboratory to study time delay and other
issues of teleoperation.

This paper will describe this lab and deal specifically with the soft-
ware written to control the robot and simulate time delays.

HARDWARE

Figure I presents a system schematic of the space robotics laboratory.

The laboratory is configured around a Puma 562 robot with 6 degrees of

freedom (see Figure 2) which is on loan from Boeing Aerospace Company in
Huntsville.

A custom designed joystick controller with two joysticks, each with

three degrees of freedom, is used to control the robot. These joysticks

are connected to the robot controller through an analog to digital inter-
face.

I_ECEDING PAGE BLANK NOT FIL_'."D

73



SOFTWARE

The software to control the robot is written in VAL II, the control
language for Puma robots.

Joystick Calibration

The joystick outputs a voltage in the range of 0 to 10 volts for each
axis. The minimum, maximum, and center are different for each axis. The
calibration program asks the operator to move each of the joysticks to its
extreme positions. The program reads the minimum, maximum, and center
voltages for each axis and stores the information for reference when
reading the joystick.

The interface is subject to electrical noise. The voltages will vary
by as much as 5%. However, since the joystick does not need to be very
precise, this is an acceptable error. To reduce the error, the joystick is
read several times and the values averaged.

Readin 9 the Joystick

The subroutine JOYSTICK reads the joystick controller using the analog

to digital interface. The reading are normalized in the range -1 to 1

based on the calibration information recorded by the calibration program.

This number is squared to give more precise control around the center

point.

Any reading less than .05 is considered to be 0. This dead zone
around the center keeps the robot from drifting slightly due to small

errors in the joystick reading caused by electrical noise.

Time Delays

The program DELAY (see listing 1) is the move program with a time

delay added. The program prompts the user for the length of the time delay

at the start of execution of the program.

When using a time delay, the program must read the joystick, store the
information, recall other information and move the robot accordingly. The

time required to execute each loop must be the same to keep the time delay

accurate. The program executes this loop seven times a second. The steps
it takes are:

1. Read the joystick.

2. Calculate the new position based on the readings.

3. If the position is out of range use the last valid position.

4. Store position on the top of stack.

5. Pull next position off the bottom of stack.

. If the robot will complete the current motion by the end of the

time allowed for the execution of the loop (1/7 of second), com-
mand the robot to move to the position just pulled off the stack.

74



7. Wait until the time allowed for execution of this loop has
elapsed.

The robot can buffer one movementat time. That is, once a commandis
given to start a motion the program proceeds without waiting for the
motion's completion. However, if another motion commandis given before
the first motion is finished, the program will wait for the first motion to
finish and start the second motion before continuing with the program.

This can be a problem when the joystick must be continuously read.
The solution is to skip the movementto the new location when the current
movementwill not be completed in the amount of time allowed. The robot
will catch up during the next motion command.

The amount of time for each loop must be held constant so that the
delay will be correct. An entry is read off the stack and a new one put on
each time a loop is executed. This way, the time delay can be changed by
varying the size of the stack. The stack should have seven entries for
each second of delay because each step is 1/7 of a step long.

The computer's clock is incremented 35 times a second and the loop
time must be a multiple of that time. 1/7 of a second was selected because
it was the shortest time in which the steps necessary to each loop could be
executed.

IE_m#_nd_

_ r=_" I I1::
fllt Unit i'_ "_' _ -

I '_--r_ "

)urr_ i ;ripper

'oi_t

-I _" t-',_'

_o,ro,,j

Co oiler

S['_UO'eer I I O¥

I I OY Control cornole

Figure 1 Space Automation and RoboticsLaborator',' Figure 2

ROBOT ARM

CONTROLLER

PERIPHERALS

VDT & DISK DI_VE

Puma 562 robot

75



VAL II ROBOT CONTROL LANGUAGE

The function of many of the command of the VAL II language are

obvious. Some of the non-obvious commands and functions in the programs
listings in Appendix B are explained below.

ADC

BREAK

DECOMPOSE

This function returns a value in the range -1023 to 1024 that

represents a voltage in the range -10 to +10 for the analog to
digital interface channel indicated.

This command suspends program operation until the current robot
motion has finished. Normally, the program starts a robot

motion and continues with the program execution.

This function returns the six components of a robot location.

The components are x, y, z, orientation, altitude and rotation.

HERE This command assigns the current location to the specified loca-
tion variable.

INRANGE

MOVE

This function returns a value indicating whether the specified

location is in the robot's work envelope.

This command moves the robot to the specified location.

RIGHTY

TIMER(-1)

This commands sets the robot in a right handed configuration.

This function returns the amount of time left before the current
robot motion is finished.

TRANS This function returns a location variable described by the six

components given. This is the opposite of the function
DECOMPOSE.

SET This command is used to assign a value to a location variable.

Listing I

DELAY PROGRAM

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

;Delay

;KW Goode 8JUL87

TYPE /C25, /U22, "Time delayed robot controlled program"
TYPE

CALL joystick
IF er THEN

TYPE

TYPE "The joystick power is turned off."
RETURN

END

scale l = 20

76



16
17
18
19
20
21
22
23
24
25
26
27
28
29
3O
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

scale a = 5
st = 0

count = 0

rate = 5

tics = INT(tps + 0.5)

RIGHTY

MOVE TRANS (-800,0,-90,0,-90)

TYPE "Moving the robot to the starting position"
BREAK

HERE rpos

TYPE /U20,"

TYPE /U20, /S

PROMPT "Enter time delay in seconds ==>", delay
TYPE

steps = delay * rate

IF steps < 1 THEN

steps = 1
END

DECOMPOSE p[] = rpos

FOR i = 0 to steps

SET stack [i] = rpos
END
TIMER 1 = 0

10 SET dpos = stack [st]

IF TIMER (-1) <tics/rate/TPS THEN

MOVE dpos
END

CALL joystick

p[O] = p[O] + xl*scalel

p[1] = p[1] + yl*scalel

p[2] = p[2] + zl*scalel

p[3] = p[3] + x2*scalea

p[4] = p[4] + y2*scalea
p[5] = p[5] + z2*scalea

SET rpos 1 = TRANS(p[O], pill, p[2], p[3], p[4], p[5])

IF INRANGE (rposl) == 0 THEN

SET rpos = rpos 1
END

DECOMPOSE p[] = rpos

SET stack [st] = rpos
st = st + 1

IF st == steps THEN
st = 0

END

count = count + 1

WAIT TIMER (1) >= (count*tics/rate -O.5)/TPS
GOTO 10

77




